

Mark Scheme (Results)

Summer 2016

Pearson Edexcel IAL in Further Pure Mathematics 2 (WFM02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016 Publications Code WFM02_01_1606_MS All the material in this publication is copyright © Pearson Education Ltd 2016

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2+bx+c) = (x+p)(x+q)$, where |pq| = |c|, leading to $x = \dots$

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to $x = \dots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme	Notes	Marks
1(a)	$\frac{1}{4r^2-1}$		
	$\frac{1}{2(2r-1)} - \frac{1}{2(2r+1)} \text{ or } \frac{\frac{1}{2}}{(2r-1)} - \frac{\frac{1}{2}}{(2r+1)}$ or equivalent or $\frac{1}{4r^2 - 1} \equiv \frac{A}{2r-1} + \frac{B}{2r+1} \Longrightarrow A = \frac{1}{2}, B = -\frac{1}{2}$	Correct partial fractions or correct values of 'A' and 'B'. Isw if possible so if correct values of 'A' and 'B' are	B1 (1)
(b)	$\sum_{r=1}^{n} \frac{1}{4r^2 - 1} = \frac{1}{2} \left(1 - \frac{1}{3} + . \right)$	$\frac{1}{1} + \frac{1}{1} - \frac{1}{1}$	
	Attempt at least first and last terr May be implied by e	ns using their partial fractions.	M1
	$\frac{1}{2}\left(1 - \frac{1}{2n+1}\right) \text{ or } \frac{1}{2} - \frac{1}{2(2n+1)} \text{ or } \frac{1}{2} - \frac{1}{4n+2}$	Correct expression	A1
	$\frac{n}{2n+1}*$	Correct completion with no errors	A1*
	Allow a different variable to be used in (
	be as printed i.e.	In terms of <i>n</i> .	(3)
(c)	$\sum_{r=9}^{25} \frac{5}{4r^2 - 1} = (5)(f(25) - f(8))$	$f(25) - f(8)$ where $f(n) = \frac{n}{2n+1}$	M1
	$=5\left(\frac{25}{51} - \frac{8}{17}\right) = \frac{5}{51}$	cao	A1
	Correct answer with no worki	ng in (c) scores both marks.	
			(2)
			Total 6

Question	PhysicsAndiviatr		
Number	Scheme	Notes	Marks
•	$ x^2-9 < 1-2x $		
2	(ignore use of "<" instead of		
	$x^2 - 9 = 1 - 2x \Longrightarrow x^2 + 2x - 10 = 0 \Longrightarrow x = \dots$	Attempts to solve	
	$x \to -1 - 2x \Longrightarrow x \to 2x - 10 - 0 \Longrightarrow x - \dots$	$x^2 - 9 = 1 - 2x$ OR $x^2 - 9 = -1 + 2x$	M1
	$x^2 - 9 = -1 + 2x \Longrightarrow x^2 - 2x - 8 = 0 \Longrightarrow x = \dots$	to obtain two non-zero values of x	1011
	$x - 9 \equiv -1 + 2x \Longrightarrow x - 2x - 8 \equiv 0 \Longrightarrow x \equiv \dots$		
	$2 + \sqrt{44}$	One correct pair of values. Allow the irrational roots to be at least as given	
	$x = \frac{-2 \pm \sqrt{44}}{2}$ OR $x = -2, 4$		A1
	2	here or $-1 \pm \sqrt{11}$ or awrt 2.32, -4.32 or	
		truncated 2.3, -4.3	
		Attempts to solve $\frac{2}{2}$ 0 1 2 AND $\frac{2}{2}$ 0 1 2	2.41
	$x^2 - 9 = -1 + 2x \Longrightarrow x^2 - 2x - 8 = 0 \Longrightarrow x = \dots$	$x^2 - 9 = 1 - 2x$ AND $x^2 - 9 = -1 + 2x$	M1
		to obtain four non-zero values of <i>x</i>	
		Both pairs of values correct. Allow	
	$x = \frac{-2 \pm \sqrt{44}}{2}$ AND $x = -2, 4$	the irrational roots to be at least as	A1
	2 2 2	given here or $-1 \pm \sqrt{11}$ or awrt 2.32,	
		-4.32 or truncated 2.3, -4.3	
	$-1 + \sqrt{11} < x < 4$		
	or	One correct inequality.	B1
	$-1 - \sqrt{11} < x < -2$		
	$-1 - \sqrt{11} < x < -2$ For $-1 + \sqrt{11}$ allow $\frac{-2 + \sqrt{44}}{2}$, for $-1 - \sqrt{11}$	allow $\frac{-2-\sqrt{44}}{2}$ but must be exact here.	
	Allow alternative notation e.g. $(-$	$1+\sqrt{11}, 4$, $(-1-\sqrt{11}, -2)$	
	$4 > x > -1 + \sqrt{11}, x > -$	$1 + \sqrt{11}$ and $x < 4$,	
	$-2 > x > -1 - \sqrt{11}, x > -1$	$-1 - \sqrt{11}$ and $x < -2$	
	$-1 + \sqrt{11} < x < 4$		
	and	Both inequalities correct.	B1
	$-1 - \sqrt{11} < x < -2$		
	For $-1+\sqrt{11}$ allow $\frac{-2+\sqrt{44}}{2}$, for $-1-\sqrt{11}$ allow $\frac{-2-\sqrt{44}}{2}$ but must be exact here.		
	Allow alternative notation e.g. $\left(-1+\sqrt{11}, 4\right), \left(-1-\sqrt{11}, -2\right)$		
	$4 > x > -1 + \sqrt{11}, x > -1 + \sqrt{11}$ and $x < 4$,		
	$-2 > x > -1 - \sqrt{11}$, $x > -1 - \sqrt{11}$ and $x < -2$		
			(6)
			Total 6

PhysicsAndMathsTutor.com			
	Q2 Alternative (ignore use of "<" instead o		
	$\left(x^2 - 9\right)^2 = \left(1 - 2x\right)^2 \Longrightarrow x^4 - \frac{1}{2}$	$18x^2 + 81 = 1 - 4x + 4x^2$	
	$x^4 - 22x^2 + 4x + 80 = 0 \Longrightarrow x = \dots$	Squares and attempts to solve a quartic equation to obtain at least two values of <i>x</i> that are non-zero.	M1
	$x = \frac{-2 \pm \sqrt{44}}{2}$ or $x = -2, 4$	One pair of values correct as defined above	A1
	$x = \frac{-2 \pm \sqrt{44}}{2} \text{and} x = -2, 4$ $M1: \text{ Obtains four non-zero values of}$ $x:$ $A1: \text{ Both pairs of values correct as}$ $defined above$ $-1 + \sqrt{11} < x < 4$ or $-1 - \sqrt{11} < x < -2$ See notes above		- M1A1
			B1
	$-1 + \sqrt{11} < x < 4$ and $-1 - \sqrt{11} < x < -2$	See notes above	B1
	In an otherwise fully correct solution, if any extra incorrect regions are given, deduct the final B mark.		

	Scheme	Notes	Marks
3	$(1+x)\frac{dy}{dx} + ky = x^{\frac{1}{2}}(1+x)^{2-k}$		
	$\frac{dy}{dx} + \frac{ky}{(1+x)} = \frac{x^{\frac{1}{2}}(1+x)^{2-k}}{(1+x)}$	Divides by $(1 + x)$ including the ky term	M1
	$\mathbf{I} = \mathbf{e}^{\int \frac{k}{1+x} dx} = (1+x)^k$	dM1: Attempt integrating factor. $I = e^{\int \frac{k}{1+x} dx}$ is sufficient for this mark but must include the <i>k</i> . Condone omission of "dx". A1: $(1+x)^k$	dM1A1
	$y(1+x)^{k} = \int x^{\frac{1}{2}}(1+x) dx$	Reaches $y \times (\text{their I}) = \int x^{\frac{1}{2}} (1+x)^{1-k} \times (\text{their I}) dx$	M1
	$\int x^{\frac{1}{2}} (1+x) dx = \frac{2}{3} x^{\frac{3}{2}} + \frac{2}{5} x^{\frac{5}{2}} (+c)$ or by parts $\int x^{\frac{1}{2}} (1+x) dx = \frac{2}{3} x^{\frac{3}{2}} (1+x) - \frac{4}{15} x^{\frac{5}{2}} (+c)$	Correct integration	A1
	$y = \frac{\frac{2}{3}x^{\frac{3}{2}} + \frac{1}{(1+1)^{\frac{3}{2}}}}{(1+1)^{\frac{3}{2}}}$	х) g.	
	$y = \frac{\frac{2}{3}x^{\frac{3}{2}}(1+x)}{(1+x)^{\frac{3}{2}}(1+x)^{\frac{3}{2}}(1+x)^{\frac{3}{2}}}$	х) g.	A1
	y = $\frac{10x^{\frac{3}{2}}(1+x)}{15}$ y = $\frac{10x^{\frac{3}{2}}(1+x)}{15(1-x)}$	g.	
	or e.g $y = \frac{2}{3}x^{\frac{3}{2}}(1+x)^{-k} + \frac{2}{5}x^{\frac{5}{2}}$ Correct answer with the co	$(1+x)^{-k} + c(1+x)^{-k}$ onstant correctly placed.	
	Allow any equivalent correct answer.		(6)
			Total 6

PhysicsAndMathsTutor.com	n
--------------------------	---

Question NumberSchemeNotesMark4(a) $f(x) = \sin(\frac{3}{2}x)$ $f'(x) = \frac{3}{2}\cos(\frac{3}{2}x)$ $f'(x) = -\frac{9}{4}\sin(\frac{3}{2}x)$ M1: Attempt first 4 derivatives. Should be $\sin \to \cos \to \sin . I.e.$ ignore $signs and coefficients.M1A2f'(x) = -\frac{9}{4}\sin(\frac{3}{2}x)f''(x) = \frac{27}{8}\cos(\frac{3}{2}x)f'''(x) = \frac{1}{16}\sin(\frac{3}{2}x)M1: Attempt first 4 derivatives. Should be\sin \to \cos \to \sin . I.e. ignoresigns and coefficients.M1A2P(x) = \frac{1}{9}e^{x}(x) = \frac{27}{8}\cos(\frac{3}{2}x)f'''(x) = \frac{1}{16}\sin(\frac{3}{2}x)M1A2M1A2P(\frac{\pi}{3}) = 1, y'(\frac{\pi}{3}) = 0, y'(\frac{\pi}{3}) = -\frac{9}{4}, y'(\frac{\pi}{3}) = 0, y''(\frac{\pi}{3}) = \frac{81}{16}Attempts at least 1 derivative at x = \frac{\pi}{3}M1P(\frac{\pi}{3}) = 1, y'(\frac{\pi}{3}) = 0, y'(\frac{\pi}{3}) = -\frac{9}{4}, y''(\frac{\pi}{3}) = 0, y''(\frac{\pi}{3}) = \frac{81}{16}Attempts at least 1 derivative at x = \frac{\pi}{3}M1f(x) = 1 - \frac{9}{8}\left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128}\left(x - \frac{\pi}{3}\right)^4dM1: Correct use of Taylor series. I.e.f(\frac{\pi}{3}) = 1, \frac{1}{22}e^{x}(x - \frac{\pi}{3})^4M1A1f(x) = 1 - \frac{9}{8}\left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128}\left(x - \frac{\pi}{3}\right)^4M1: Correct use of Taylor series. I.e.f(\frac{\pi}{3}) and not aMaclaurin series. Dependent on theprevious method mark.A1: Correct expansion. Allow equivalentsingle fractions for \frac{9}{8} and/or \frac{27}{128} andallow decimal equivalents i.e. 1.125 and0.2109375. Ignore any extra terms.M1A1f(\frac{1}{3}) = 0.4815M1: Attempts f(\frac{1}{3}) or states x = \frac{1}{3}A1: 0.4815 caoM1A1$	Orentian			
(b) $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 - \frac{9}{12} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = 1 -$	-	Scheme	Notes	Marks
(b) $f''(x) = \frac{81}{16} \sin\left(\frac{3}{2}x\right)$ Allow un-simplified e.g. $f' = -\frac{3}{2} \cdot \frac{3}{2} \sin\left(\frac{3}{2}x\right)$ $y(\frac{\pi}{3}) = 1, y'(\frac{\pi}{3}) = 0, y'(\frac{\pi}{3}) = -\frac{9}{4}, y''(\frac{\pi}{3}) = 0, y''(\frac{\pi}{3}) = \frac{81}{16}$ M1 Attempts at least 1 derivative at $x = \frac{\pi}{3}$ $dM1: Correct use of Taylor series. I.e. f(x) = f(\frac{\pi}{3}) + (x - \frac{\pi}{3})^{2} f''(\frac{\pi}{3}) +$ Evidence of at least one term of the correct structure i.e. $(x - \frac{\pi}{3})^{n} \frac{f''(\frac{\pi}{3})}{n!}$ and not a Maclaurin series. Dependent on the previous method mark. A1: Correct expansion. Allow equivalent single fractions for $\frac{9}{8}$ and/or $\frac{27}{128}$ and allow decimal equivalents i.e. 1.125 and 0.2109375. Ignore any extra terms. (b) $f(\frac{1}{3}) = 0.4815$ M1: Attempts $f(\frac{1}{3})$ or states $x = \frac{1}{3}$ M1A1	4(a)	$f'(x) = \frac{3}{2}\cos\left(\frac{3}{2}x\right)$ $f''(x) = -\frac{9}{4}\sin\left(\frac{3}{2}x\right)$	$\sin \rightarrow \cos \rightarrow \sin \rightarrow \cos \rightarrow \sin $. I.e. ignore signs and coefficients.	M1A2
(b) $f\left(x\right) = 1 - \frac{9}{8}\left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128}\left(x - \frac{\pi}{3}\right)^4$ $\frac{dM1: \text{ Correct use of Taylor series. I.e.}}{f(x) = f(\frac{\pi}{3}) + (x - \frac{\pi}{3})^{r} \frac{f^n(\frac{\pi}{3})}{2!} + \dots}{F^n(\frac{\pi}{3})} \text{ and not a}$ $M1$ $\frac{dM1: \text{ Correct use of Taylor series. I.e.}}{f(x) = f(\frac{\pi}{3}) + (x - \frac{\pi}{3})^{r} \frac{f^n(\frac{\pi}{3})}{n!} \text{ and not a}}{\frac{1}{21} + \dots}$ $Evidence of at least one term of the correct structure i.e. \left(x - \frac{\pi}{3}\right)^n \frac{f^n(\frac{\pi}{3})}{n!} \text{ and not a}}{\frac{1}{218} + \dots} M1A1 \frac{M1A1}{\text{ Single fractions for } \frac{9}{8} \text{ and/or } \frac{27}{128} \text{ and}}{\frac{1}{218} + \dots} f\left(\frac{1}{3}\right) = 0.4815 M1: \text{ Attempts } f\left(\frac{1}{3}\right) \text{ or states } x = \frac{1}{3} M1A1$		$f^{m}(x) = \frac{81}{16}\sin(\frac{3}{2}x)$	Allow un-simplified e.g. $f'' = -\frac{3}{2} \cdot \frac{3}{2} \sin(\frac{3}{2}x)$	
(b) $f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3}\right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3}\right)^4$ $f(x) = f\left(\frac{\pi}{3}\right) + (x - \frac{\pi}{3})^2 f\left(\frac{\pi}{3}\right) + \dots$ Evidence of at least one term of the correct structure i.e. $\left(x - \frac{\pi}{3}\right)^n \frac{f^n\left(\frac{\pi}{3}\right)}{n!}$ and not a Maclaurin series. Dependent on the previous method mark. A1: Correct expansion. Allow equivalent single fractions for $\frac{9}{8}$ and/or $\frac{27}{128}$ and allow decimal equivalents i.e. 1.125 and 0.2109375. Ignore any extra terms. (b) $f\left(\frac{1}{3}\right) = 0.4815$ M1: Attempts $f\left(\frac{1}{3}\right)$ or states $x = \frac{1}{3}$ M1A1				M1
$f\left(\frac{1}{3}\right) = 0.4815$ M1: Attempts $f\left(\frac{1}{3}\right)$ or states $x = \frac{1}{3}$ M1A1		$f(x) = 1 - \frac{9}{8} \left(x - \frac{\pi}{3} \right)^2 + \frac{27}{128} \left(x - \frac{\pi}{3} \right)^4$	$f(x) = f(\frac{\pi}{3}) + (x - \frac{\pi}{3})f'(\frac{\pi}{3}) + (x - \frac{\pi}{3})^2 \frac{f''(\frac{\pi}{3})}{2!} + \dots$ Evidence of at least one term of the correct structure i.e. $(x - \frac{\pi}{3})^n \frac{f^n(\frac{\pi}{3})}{n!}$ and not a Maclaurin series. Dependent on the previous method mark. A1: Correct expansion. Allow equivalent single fractions for $\frac{9}{8}$ and/or $\frac{27}{128}$ and allow decimal equivalents i.e. 1.125 and	
$f\left(\frac{1}{3}\right) = 0.4815$ M1: Attempts $f\left(\frac{1}{3}\right)$ or states $x = \frac{1}{3}$ M1A1				(6)
A1: 0.4815 cao	(b)	$f\left(\frac{1}{3}\right) = 0.4815$		M1A1
			A1: 0.4813 cao	
letaT				(2) Total 8
				101010

PhysicsAndMath	sTutor.com	1
Scheme	Notes	Marks
$z = \frac{3w+1}{2-w}$	M1: Attempt to make z the subject as far as $z =$ A1: Correct equation	M1A1
$\left =1 \Rightarrow \left \frac{3w+1}{2-w}\right =1 \Rightarrow \left \frac{3(u+iv)+1}{2-(u+iv)}\right =1$	Uses $ z = 1$ and introduces $w = u + iv$	M1
$(3u+1)^{2} + (3v)^{2} = (u-2)^{2} + v^{2}$	M1: Correct use of Pythagoras. Condone missing brackets provided the intention is clear and allow e.g. $(3v)^2 = 3v^2$ but there should be no i's.	M1
$u^2 + v^2 + \frac{10}{8}u - \frac{3}{8} = 0$		
$\left(u+\frac{5}{8}\right)^2 - \frac{25}{64} + v^2 = \frac{3}{8}$	Attempt to complete the square on the equation of a circle. I.e. an equation where the coefficients of u^2 and v^2 are the same and the other terms are in u , v or are constant. (Allow slips in completing the square). Dependent on all previous M marks.	ddddM1
$\left(u+\frac{5}{8}\right)^2+v^2=\frac{49}{64}\Rightarrow\left(-\frac{5}{8},0\right),\frac{7}{8}$	A1: Centre $\left(-\frac{5}{8}, 0\right)$ A1: Radius $\frac{7}{8}$	- A1A1

Alternative for the first 3 marks

 $x^{2} + y^{2} = 1 \Longrightarrow \left(\frac{5u + 2 - 3(u^{2} + v^{2})}{(2 - u)^{2} + v^{2}}\right)^{2} + \left(\frac{7v}{(2 - u)^{2} + v^{2}}\right)^{2} = 1$

Introduces w = u + iv, multiplies numerator and denominator by the complex conjugate of the denominator and uses $x^2 + y^2 = 1$ correctly to obtain an equation in *u* and *v*.

Question Number 5

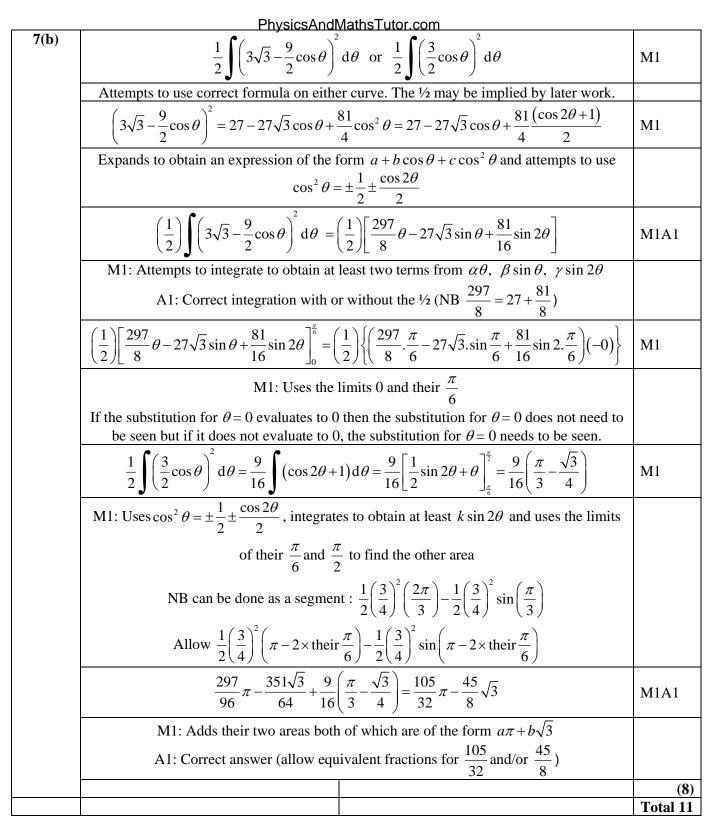
M1A1

M1

(7)

Total 7

PhysicsAndMath	sTutor.com


	PhysicsAndMaths Lutor.com				
Question Number	Scheme		Notes	Marks	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 3\frac{\mathrm{d}y}{\mathrm{d}x} + 2y =$	$= 3x^2 +$	2x + 1		
6(a)	$m^2 + 3m + 2 = 0 \Longrightarrow m = -1, -2$	CF)	rect roots (may be implied by their	B1	
	$y = Ae^{-2x} + Be^{-x}$		CF of the correct form Correct CF	M1A1	
	$y = ax^2 + bx + c$		rect form for PI	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2ax + b, \ \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2a \Longrightarrow 2a + 3(2ax + b)$	(b)+2	$2(ax^{2}+bx+c) = 3x^{2}+2x+1$	M1	
	M1: Differentiates twice and substitutes into				
	and puts equal to $3x^2 + 2x + 1$ or substitute				
	equation and compares coeffi For the substitution, at least one of y,				
	3	y OI	y must be concerty placed.		
	$a=\frac{3}{2}$			A1	
	$6a+2b=2 \Rightarrow b=-\frac{7}{7} \Rightarrow c=\frac{17}{7}$	M1: Solves to obtain one of <i>b</i> or <i>c</i>		M1A1	
	$\frac{3}{2} = \frac{3}{2} = \frac{3}{2} = \frac{3}{2} = \frac{3}{4} = \frac{3}{4} = \frac{3}{2} = \frac{3}{4} = \frac{3}$	A1: Correct <i>b</i> and <i>c</i>		MIAI	
	$6a + 2b = 2 \Longrightarrow b = -\frac{7}{2} \Longrightarrow c = \frac{17}{4}$ $y = Ae^{-2x} + Be^{-x} + \frac{3}{2}x^2 - \frac{7}{2}x + \frac{17}{4}$	Correct ft (their CF + their PI) but must be $y =$		B1ft	
				(9)	
(b)	$0 = A + B + \frac{17}{4}$	Subs GS	stitutes $x = 0$ and $y = 0$ into their	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2A\mathrm{e}^{-2x} - B\mathrm{e}^{-x} + 3x - 3x$	4	2	M1	
·	Attempts to differentiate and s	ubstiti	ites $x = 0$ and $y' = 0$		
	$0 = A + B + \frac{17}{4}, 0 = -2A - B - \frac{7}{2} \Longrightarrow A =, B$	3 =	Solves simultaneously to obtain values for <i>A</i> and <i>B</i>	M1	
	$A = \frac{3}{4}, B = -5$		Correct values	A1	
	$y = \frac{3}{4}e^{-2x} - 5e^{-x} + \frac{3}{2}x^2 - \frac{7}{2}x + \frac{17}{4}$		Correct ft (their CF + their PI) but must be $y =$	B1ft	
				(5)	
				Total 14	

PMT

_		
- E	אכ	ΛТ
_	'IV	11
•	•••	•••

	PhysicsAndMathsTutor.com				
Question Number	Scheme	Notes	Marks		
7.	$C_1: r = \frac{3}{2}\cos\theta,$	$C_2: r = 3\sqrt{3} - \frac{9}{2}\cos\theta$			
(a)	$\frac{3}{2}\cos\theta = 3\sqrt{3} - \frac{9}{2}\cos\theta \Rightarrow \theta = \dots$ or $\cos\theta = \frac{2r}{3} \Rightarrow r = 3\sqrt{3} - 3r \Rightarrow r = \dots$	Puts $C_1 = C_2$ and attempt to solve for θ or Eliminates $\cos \theta$ and solves for r	M1		
	$\theta = \frac{\pi}{6}$ or $r = \frac{3\sqrt{3}}{4}$	Correct θ or correct <i>r</i> . Allow θ = awrt 0.524, <i>r</i> = awrt 1.3	A1		
	$r = \frac{3\sqrt{3}}{4}$ and $\theta = \frac{\pi}{6}$	Correct <i>r</i> and θ (isw e.g. $\left(\frac{\pi}{6}, \frac{3\sqrt{3}}{4}\right)$) Allow θ = awrt 0.524, <i>r</i> = awrt 1.3	A1		
			(3)		

որ - And Mathe T .

PMT

Special Case – Uses $\pm (C_1 - C_2)$

(b)	$\frac{1}{2}\int \left(3\sqrt{3}-\frac{9}{2}\cos\theta-\frac{3}{2}\cos\theta\right)^2 \mathrm{d}\theta$	M1			
	Attempts to use correct formula on $\pm (C_1 - C_2)$. The ¹ / ₂ may be implied by later work.				
	$(3\sqrt{3} - 6\cos\theta)^2 = 27 - 36\sqrt{3}\cos\theta + 36\cos^2\theta = 27 - 36\sqrt{3}\cos\theta + 36\frac{(\cos 2\theta + 1)}{2}$				
	Expands to obtain an expression of the form $a + b \cos \theta + c \cos^2 \theta$ and attempts to use $\cos^2 \theta = \pm \frac{1}{2} \pm \frac{\cos 2\theta}{2}$				
	$\left(\frac{1}{2}\right)\int \left(3\sqrt{3}-6\cos\theta\right)^2 d\theta = \left(\frac{1}{2}\right)\left[45\theta-36\sqrt{3}\sin\theta+9\sin2\theta\right]$	M1			
	Attempts to integrate to obtain at least two terms from $\alpha\theta$, $\beta\sin\theta$, $\gamma\sin2\theta$				
	No more marks available				

<u> </u>	PhysicsAndMaths I utor.com				
Question Number	Scheme	Notes	Marks		
8(a) WAY 1	$\left(z+\frac{1}{z}\right)^5 = z^5 + 5z^3 + 10z + \frac{10}{z} + \frac{5}{z^3} + \frac{1}{z^5}$	M1: Attempt to expand $(z \pm \frac{1}{z})^5$ A1: Correct expansion with correct powers of <i>z</i> .	M1A1		
•	$z = \cos\theta + i\sin\theta \Longrightarrow z + \frac{1}{z} = 2\cos\theta$	May be implied	B1		
	$= z^{5} + \frac{1}{z^{5}} + 5\left(z^{3} + \frac{1}{z^{3}}\right) + 10\left(z + \frac{1}{z}\right) = 2\cos 5\theta + 10\cos 3\theta + 20\cos \theta$ Uses at least one of $z^{5} + \frac{1}{z^{5}} = 2\cos 5\theta$ or $z^{3} + \frac{1}{z^{3}} = 2\cos 3\theta$		M1		
	$\left(z+\frac{1}{z}\right)^5 = 32\cos^5\theta$		B1		
	$\cos^5\theta = \frac{1}{16}\cos 5\theta + \frac{5}{16}\cos 3\theta + \frac{5}{8}\cos \theta$	Correct expression	A1		
			(6)		
	WAY 2 (Using $e^{i\theta}$)				
	$(e^{i\theta} + e^{-i\theta})^5 = e^{5i\theta} + 5e^{3i\theta} + 10e^{i\theta} + 10e^{-i\theta} + 5e^{-3i\theta} + e^{-5\theta}$	^{5iθ} $\frac{M1: Attempt to expand}{\left(e^{i\theta} \pm e^{-i\theta}\right)^5}$ A1: Correct expansion	M1A1		
	$2\cos\theta = e^{i\theta} + e^{-i\theta}$	May be implied	B1		
	$= e^{5i\theta} + e^{-5i\theta} + 5(e^{3i\theta} + e^{-3i\theta}) + 10(e^{i\theta} + e^{-i\theta}) = 2\cos 5\theta + 10\cos 3\theta + 20\cos \theta$ Uses one of $e^{5i\theta} + e^{-5i\theta} = 2\cos 5\theta$ or $e^{3i\theta} + e^{-3i\theta} = 2\cos 3\theta$		M1		
	$\left(e^{i\theta}+e^{-i\theta}\right)^5=32\cos^5\theta$		B1		
	$\cos^5\theta = \frac{1}{16}\cos 5\theta + \frac{5}{16}\cos 3\theta + \frac{5}{8}\cos \theta$	Correct expression	A1		
	WAY 3 (Using De Moivre on cos 56	θ and identity for $\cos 3\theta$)			
	$(\cos\theta + i\sin\theta)^5 = c^5 + 5ic^4s + 10c^3i^2s^2 + 10c^2i^3s^3 + 5ci^4s^4 + i^5s^5$ M1: Attempts to expand. NB may only consider real parts here. A1: Correct real terms (may include i's) (Ignore imaginary parts for this mark)		M1A1		
	$\cos 5\theta = \cos^5 \theta - 10\cos^3 \theta \sin^2 \theta + 5\cos \theta \sin^4 \theta$	Correct real terms with no i's	B1		
	$=\cos^{5}\theta - 10\cos^{3}\theta(1 - \cos^{2}\theta) + 5\cos\theta(1 - \cos^{2}\theta)^{2}$	Uses $\sin^2 \theta = 1 - \cos^2 \theta$ to eliminate $\sin \theta$	M1		
	$16\cos^5\theta = \cos 5\theta + 20\cos^3\theta - 5\cos\theta$				
	$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$	Correct identity for $\cos 3\theta$	B1		
	$16\cos^5\theta = \cos 5\theta + 5\cos 3\theta + 10\cos \theta$				
	$\cos^5\theta = \frac{1}{16}\cos 5\theta + \frac{5}{16}\cos 3\theta + \frac{5}{8}\cos \theta$	Correct expression	A1		
			(6)		

PMT

	PhysicsAndMathsTutor.com				
(b)	$\int \left(\frac{1}{16}\cos 5\theta + \frac{5}{16}\cos 3\theta + \frac{5}{8}\cos \theta\right) d\theta = \frac{1}{80}\sin 5\theta + \frac{5}{48}\sin 3\theta + \frac{5}{8}\sin \theta$				
	M1: Attempt to integrate – Evidence of $\cos n\theta \rightarrow \pm \frac{1}{n}\sin n\theta$ where $n = 5$ or 3				
	A1ft: Correct integration (ft their p, q, r)				
	$\left[\frac{1}{80}\sin 5\theta + \frac{5}{48}\sin 3\theta + \frac{5}{8}\sin \theta\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} = \left(\frac{1}{80}\sin \frac{5\pi}{3} + \frac{5}{48}\sin \pi + \frac{5}{8}\sin \frac{\pi}{3}\right) - \left(\frac{1}{80}\sin \frac{5\pi}{6} + \frac{5}{48}\sin \frac{\pi}{2} + \frac{5}{8}\sin \frac{\pi}{6}\right)$				
	Substitutes the given limits into a changed function and subtracts the right way round.				
	There should be evidence of the substitution of $\frac{\pi}{3}$ and $\frac{\pi}{6}$ into their changed function				
	for at least 2 of their terms and subtraction. If there is no evidence of substitution and the answer is incorrect, score M0 here.				
	Allow exact equivalents e.g.				
	$=\frac{49\sqrt{3}}{160} - \frac{203}{480} \qquad \qquad =\frac{1}{16} \left(4.9\sqrt{3} - \frac{203}{30}\right)$	A1			
	If they use the letters <i>p</i> , <i>q</i> and <i>r</i> or their values of <i>p</i> , <i>q</i> and <i>r</i> , even from no				
	working, the M marks are available in (b) but <u>not</u> the A marks.				
		(4)			
		Total 10			

Question Number	Scheme	Notes	Marks		
	$\operatorname{arg}\left(\frac{z-5}{z-2}\right) = \frac{\pi}{4}$				
9(a)		M1 A circle or an arc of a circle any dotted or dashed.	where. Allow		
		A1 A circle or an arc of a circle (al dashed) passing through or touc 5 on the positive real axis. (Im may be missing) A1 Fully correct diagram with 2 a	ching at 2 and aginary axis nd 5 marked		
-	2 5	correctly with no part of the cir real axis. It must be a major a semi-circle. The imaginary a present and the arc must not cro imaginary axis.	rc and not a xis must be		
(b)	Centre $C(x_c, y_c)$ is at (3.5, 1.5)	May be implied and may appear on the diagram. Can score anywhere e.g. from finding the equation of the circle in part (a) or as part of the calculation for <i>OC</i> .	(3) B1		
	$r = \sqrt{1.5^2 + 1.5^2} \left(= \frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2} \right)$	$r = \sqrt{2 \times y_c^2} \text{ or equivalent work e.g.}$ $r = \frac{1.5}{\cos 45}, r = \frac{1.5}{\sin 45} \text{ or } \frac{3\sqrt{2}}{2} \text{ seen}$	M1		
	Max $ z = OC + r = \sqrt{3.5^2 + 1.5^2} + r$		M1		
	$=\frac{\sqrt{58}}{2}+\frac{3}{\sqrt{2}}$	Oe e.g $\sqrt{14.5} + \sqrt{4.5}, \frac{\sqrt{58} + 3\sqrt{2}}{2}$	A1		
			(4)		
	Special Case – correct work with Control $C(r, r, r)$ is at (2.5 – 1.5)	h arc below the real axis:	DO		
	Centre $C(x_c, y_c)$ is at $(3.5, -1.5)$		BO		
	$r = \sqrt{1.5^2 + 1.5^2} \left(= \frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2} \right)$	$r = \sqrt{2 \times y_c^2} \text{ or equivalent work e.g.}$ $r = \frac{1.5}{\cos 45}, r = \frac{1.5}{\sin 45} \text{ or } \frac{3\sqrt{2}}{2} \text{ seen}$	M1		
	Max $ z = OC + r = \sqrt{3.5^2 + 1.5^2} + r$		M1		
	$=\frac{\sqrt{58}}{2}+\frac{3}{\sqrt{2}}$	Oe e.g $\sqrt{14.5} + \sqrt{4.5}, \frac{\sqrt{58} + 3\sqrt{2}}{2}$	A1		
			Total 7		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R \mbox{ORL}